Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Methods Mol Biol ; 2663: 441-461, 2023.
Article in English | MEDLINE | ID: covidwho-2324357

ABSTRACT

Heparin-induced thrombocytopenia (HIT) is a well-characterized, iatrogenic complication of heparin anticoagulation with significant morbidity. In contrast, vaccine-induced immune thrombotic thrombocytopenia (VITT) is a recently recognized severe prothrombotic complication of adenoviral vaccines, including the ChAdOx1 nCoV-19 (Vaxzevria, AstraZeneca) and Ad26.COV2.S (Janssen, Johnson & Johnson) vaccines against COVID-19. The diagnosis of HIT and VITT involve laboratory testing for antiplatelet antibodies by immunoassays followed by confirmation by functional assays to detect platelet-activating antibodies. Functional assays are critical to detect pathological antibodies due to the varying sensitivity and specificity of immunoassays. This chapter presents a protocol for a novel whole blood flow cytometry-based assay to detect procoagulant platelets in healthy donor blood in response to plasma from patients suspected of HIT or VITT. A method to identify suitable healthy donors for HIT and VITT testing is also described.


Subject(s)
COVID-19 , Thrombocytopenia , Thrombosis , Vaccines , Humans , Blood Platelets , Ad26COVS1 , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Flow Cytometry , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Antibodies , Platelet Factor 4
2.
J Thromb Haemost ; 20(2): 387-398, 2022 02.
Article in English | MEDLINE | ID: covidwho-1506601

ABSTRACT

BACKGROUND: Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2. Recently, we observed that platelets from patients with severe COVID-19 infection express procoagulant phenotype. The molecular mechanisms that induce the generation of procoagulant platelets in COVID-19 patients are not completely understood. OBJECTIVES: In this study, we investigated the role of AKT (also known as Protein Kinase B), which is the major downstream effector of PI3K (phosphoinositid-3-kinase) (PI3K/AKT) signaling pathway in platelets from patients with COVID-19. PATIENTS AND METHODS: Platelets, Sera and IgG from COVID-19 patients who were admitted to the intensive care unit (ICU) were analyzed by flow cytometry as well as western blot and adhesion assays. RESULTS: Platelets from COVID-19 patients showed significantly higher levels of phosphorylated AKT, which was correlated with CD62p expression and phosphatidylserine (PS) externalization. In addition, healthy platelets incubated with sera or IgGs from ICU COVID-19 patients induced phosphorylation of PI3K and AKT and were dependent on Fc-gamma-RIIA (FcγRIIA). In contrast, ICU COVID-19 sera mediated generation of procoagulant platelets was not dependent on GPIIb/IIIa. Interestingly, the inhibition of phosphorylation of both proteins AKT and PI3K prevented the generation of procoagulant platelets. CONCLUSIONS: Our study shows that pAKT/AKT signaling pathway is associated with the formation of procoagulant platelets in severe COVID-19 patients without integrin GPIIb/IIIa engagement. The inhibition of PI3K/AKT phosphorylation might represent a promising strategy to reduce the risk for thrombosis in patients with severe COVID-19.


Subject(s)
COVID-19 , Proto-Oncogene Proteins c-akt , Blood Platelets , Humans , Phosphatidylinositol 3-Kinases , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL